
Basic Concepts of  
Encoding 
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Redundancy vs. Efficiency 

• 100% efficiency of encoding means that the 
average word length must be equal to the 
entropy of the original message ensemble: 
 
 
 

• If the entropy of the original message ensemble is 
less than the length of the word over the original 
alphabet, this means that the original encoding is 
redundant and that the original information may 
be compressed by the  efficient encoding. 
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Redundancy vs. Efficiency 

• On the other hand, as we have seen, to be 
able to detect and to correct the errors, a 
code must be redundant, that is its efficiency 
must be lower that 100%: the average word 
length must be larger than the entropy of the 
original message ensemble: 
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Redundancy and Error Correction 

• As we have seen, the capacity of the channel 
is the maximum of transinformation (with 
respect to all possible sets of probabilities that 
could be assigned to the source alphabet) that 
could be transmitted through this channel: 

 

 

 

   

 

max ; max ( ) ( | )

                           max ( ) ( | )

I X Y H X H X Y

H X

C

Y H Y

   

 

4 



Redundancy and Error Correction 
• For the digital communication channel with 

the binary alphabet, the probability of error 
(inversion of a bit) p and the probability of the 
correct transmission 1-p: 
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Redundancy and Error Correction 

• The capacity C determines the limit for error 
correction encoding: if we need to transmit a 
message of the length m (bits) ensuring the 
error correction ability, we will need to 
transmit at least                      bits.  
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Redundancy and Error Correction 

• Theorem. Let us have a digital communication 
channel with the probability of error p. Any 
error correction encoding, which ensures that 
the probability of the error in the transmitted 
word does not exceed ε, leads to                
times extension of the original information 
and 

 ,k m p

 
0

lim , 1/

m

k m p C





7 



Redundancy and Error Correction 

• The efficient encoding is reached when 

 

 

• The absolutely reliable encoding procedure 
does not exist because 
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Shannon-Fano Encoding 
• Sources without memory are such sources of 

information, where the probability of the next 
transmitted symbol (message) does not depend 
on the probability of the previous transmitted 
symbol (message). 

• Separable codes are those codes for which the 
unique decipherability holds. 

• Shannon-Fano encoding constructs reasonably 
efficient separable binary codes for sources 
without memory. 
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Shannon-Fano Encoding 

• Shannon-Fano encoding is the first established 
and widely used encoding method.  This 
method and the corresponding code were 
invented simultaneously and independently of 
each other by C. Shannon and R. Fano in 1948. 
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Shannon-Fano Encoding 

• Let us have the ensemble of the original 
messages to be transmitted with their 
corresponding probabilities: 

 

• Our task is to associate a sequence Ck of 
binary numbers of unspecified length nk to 
each message xk such that: 
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Shannon-Fano Encoding 

• No sequences of employed binary numbers Ck 
can be obtained from each other by adding more 
binary digits to the shorter sequence (prefix 
property). 

• The transmission of the encoded message is 
“reasonably” efficient, that is, 1 and 0 appear 
independently and with “almost” equal 
probabilities. This ensures transmission of 
“almost” 1 bit of information per digit of the 
encoded messages. 
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Shannon-Fano Encoding 

• Another important general consideration, 
which was taken into account by C. Shannon 
and R. Fano, is that (as we have already 
considered) a more frequent message has to 
be encoded by a shorter encoding vector 
(word) and a less frequent message has to be 
encoded by a longer encoding vector (word). 
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Shannon-Fano Encoding: Algorithm 

• The letters (messages) of (over) the input alphabet must be 
arranged in order from most probable to least probable. 

• Then the initial set of messages must be divided into two 
subsets whose total probabilities are as close as possible to 
being equal.  All symbols then have the first digits of their 
codes assigned; symbols in the first set receive "0" and 
symbols in the second set receive "1".  

• The same process is repeated on those subsets, to 
determine successive digits of their codes, as long as any 
sets with more than one member remain.  

• When a subset has been reduced to one symbol, this 
means the symbol's code is complete. 
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Shannon-Fano Encoding: Example 
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Message x1 x2 

 
x3 

 
x4 

 
x5 

 
x6 

 
x7 

 
x8 

 

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625 

x1,x2,x3,x4,x5,x6,x7,x8 

x1,x2 x3,x4,x5,x6,x7,x8 

x1 x2 x3,x4 x5,x6,x7,x8 

x3 x4 x5,x6 x7,x8 

01 00 

1100 

100 

10 

0 1 
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x5 x6 x7 x8 

101 110 111 

1101 1110 1111 



Shannon-Fano Encoding: Example 

 

 

 

• Entropy 

• Average length of the encoding vector 

 

 

• The Shannon-Fano code gives 100% efficiency  
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Message x1 x2 x3 x4 x5 x6 x7 x8 

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625 

Encoding 
vector 

00 01 100 101 1100 1101 1110 1111 
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Shannon-Fano Encoding: Example 

 

 

• The Shannon-Fano code gives 100% efficiency. 
Since the average length of the encoding 
vector for this code is 2.75 bits, it gives the  
0.25 bits/symbol compression, while the 
direct uniform binary encoding (3 bits/symbol) 
is redundant. 
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Message x1 x2 x3 x4 x5 x6 x7 x8 

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625 

Encoding 
vector 

00 01 100 101 1100 1101 1110 1111 



Shannon-Fano Encoding: 
Properties 

• The Shannon-Fano encoding is the most 
efficient when the probability of the 
occurrence of each message (letter) xk is of 
the form                     and 

• The prefix property always holds and 

 

 

 the efficiency is 100%. 
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Shannon-Fano Encoding: 
Properties 

• It should be taken into account that the 
Shannon-Fano code is not unique because it 
depends on the partitioning of the input set of 
messages, which, in turn, is not unique. 

• If the successive equiprobable partitioning is 
not possible at all, the Shannon-Fano code 
may not be an optimum code, that is, a code 
that leads to the lowest possible average 
length of the encoding vector for a given D. 
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Huffman Encoding 

• This encoding algorithm has been proposed by 
David A. Huffman in 1952, and it is still the 
main loss-less compression basic encoding 
algorithm. 

• The Huffman encoding ensures constructing 
separable codes (the unique decipherability 
property holds) with minimum redundancy 
for a set of discrete messages (letters), that is, 
this encoding results in an optimum code. 
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Huffman Encoding: Background 

• For an optimum encoding, the longer encoding 
vector (word) should correspond to a message 
(letter) with lower probability: 
 

• For an optimum encoding it is necessary that 
 

 otherwise the average length of the encoding 
vector will be unnecessarily increased. 
 

• It is important to mention that not more than D (D is the number of letters 
in the encoding alphabet) encoding vectors could have equal length (for 
the binary encoding D=2) 
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Huffman Encoding: Background 

• For an optimum encoding with D=2 it is 
necessary that the last two encoding vectors 
are identical except for the last digits. 

• For an optimum encoding it is necessary that 
each sequence of length                  digits either 
must be used as an encoding vector or  must 
have one of its prefixes used as an encoding 
vector. 
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Huffman Encoding: Algorithm 

• The letters (messages) of (over) the input alphabet must be 
arranged in order from most probable to least probable. 

• Two least probable messages (the last two messages) are 
merged into the composite message with a probability 
equal to the sum of their probabilities. This new message 
must be inserted into the sequence of the original 
messages instead of its “parents”, accordingly with its 
probability. 

• The previous step must be repeated until the last remaining 
two messages will compose a message, which will be the 
only member of the messages’ sequence. 

• The process may be utilized by constructing a binary tree – 
the Huffman tree. 

23 



Huffman Encoding: Algorithm 

• The Huffman tree should be constructed as follows:    
1) A root of the tree is a message from the last step 
with the probability 1; 2) Its children are two messages 
that have composed the last message; 3) The step 2 
must be repeated until all leafs of the tree will be 
obtained. These leafs are the original messages. 

• The siblings-nodes from the same level are given the 
numbers 0 (left) and 1 (right). 

• The encoding vector for each message is obtained by 
passing a path from the root’s child to the leave 
corresponding to this message and reading the 
numbers of nodes (root’s childintermidiatesleaf) 
that compose the encoding vector. 
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Huffman Encoding: Example 

• Let us construct the Huffman code for the 
following set of messages: x1, x2, x3, x4, x5 
with the probabilities p(x1)=…=p(x5)=0.2 

• 1) x1 (p=0.2), x2 (p=0.2), x3 (p=0.2), x4 (p=0.2), x5 (p=0.2)  

• 2) x4,x5x45 (p=0.4)=> x45,x1,x2,x3 

• 3) x2,x3x23 (p=0.4)=>x45, x23, x1 

• 4) x1,x23x123(p=0.6)=> x123, x45 

• 5) x123, 45x12345 (p=1) 
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Huffman Encoding: Example 
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x12345 

x123 x45 

x4 x1 x23 x5 

x2 x3 

0 1 

0 0 

0 

1 1 

1 

Encoding vectors: x1(00); x2(010); x3(011); x4(10); x5(11) 



Huffman Encoding: Example 

• Entropy  

• Average length of the encoding vector 

 

 

• The Huffman code gives (2.32/2.4)100% = 97% 
efficiency  
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